

Digitisation for Compliance and Decarbonisation

Prof Chris Knapp PhD RAIA

Research Director, Building 4.0 CRC

Prof Chris Knapp PhD RAIA

Research Director

9 August 2023

Better buildings through increased digitalisation, industrialisation, culture change, and sustainability

B4.0 CRC - BUILDING THE FUTURE INDUSTRY

7 YEARS
3 UNIVERSITIES
~30 INDUSTRY PARTNERS
\$130M TOTAL RESEARCH VALUE

SINCE JULY 2020:

- 32 COMPLETED PROJECTS
- 18 ACTIVE PROJECTS
- 44 PIPELINE PROJECTS

Projects: pipeline, active, completed

Sustainability

Project 5 - Automatic Compliance & Energy Rating System

Project 11 - Environmental Credentials for Building Technology Platforms

Project 18 - Long-span Low-Carbon Floor Systems (Scoping Study)

Project 19 - Hybrid Timber-Steel Structural Systems for Mid to High Rise Buildings

Project 27 - Environmental Decision-Support for Structures

Project 35 - Prefab Housing Solutions for Bushfire & Disaster Relief

Project 37 - Aust Timber Fibre Insulation Scoping Study

Project 39 - Hybrid Timber-Steel Extension

Project 46 - Data analytics for structural fibre resources optimisation

Project 48 - Shared Interest Project: Circular Economy

Project 50 - Automation of energy rating tool

Project 54 - HVAC in a post-covid world

Project 59 - Strong Floor

Project 68 - Post and Plate CLT Scoping, Optimisation, and Testing

Project 72 - PassivHaus Tower Performance Evaluation

Digitalisation

Project 01 - e-Planning / e-Approvals Phase 1

Project 04 - Computational Design & Optimisation Tools for Prefab Building Systems

Project 06 - Field data collation to support real-time operational management

Project 12 - VR/AR Technologies in Vocational Education / Training

Project 16 - Fire Safety in Advanced Building Systems

Project 22 - Design Automation methods for Steel Framed Buildings Phase 1

Project 38 - Victorian Govt Digital Build

Project 42 - Workflow Automation Tools for Home Designs

Project 44 - Generative Architectural Design Engine

Project 53 - Automated Design Optimisation and Al Tools for Prefab Systems (Ext to 4)

Project 55 - Smart Contracts / Smart Finance in construction industry

Project 57 - Wind Comfort Simulation and New Engineering Design Process

Project 62 - Digital Building Approvals

Project 71 - Automated Resolution of BIM Clash Incidents

Project 73 - LLM for Material Tracking and Part Library

People. Practices & Culture

Project 02 - Auto-Tracking of Materials for Supply Chain Logistics and Provenance

Project 09 - Implementing DfMA & Lean Construction Principles

Project 14 - Building Products Supply Chain Naming Conventions and Standards

Project 15 - Resource optimisation Studies: Forest to Building

Project 21 - Regulatory Reform for Industrialised Building

Project 29 - Workplace Safety

Project 33 - Remote Compliance Inspections

Project 56 - Training and Optimising CRC Research in Construction

Project 58 - Construction Wellness

Project 60 - Mass Timber Wellness

Project 66 - Future of Construction Education

Industrialisation

Project 03 - Projects to Platforms

Project 08 - Prefab, Integrated Wall Systems - Scoping Study

Project 17 - Implication of Industry 4.0 for the construction industry: smart prefab

Project 19 - Hybrid Timber-Steel Structural Systems for Mid to High Rise Buildings

Project 20 - Sys & methods for robustness of mid-rise Light Gauge Steel (LGS) buildings

Project 23 - Prefab: Barriers & opportunities in the Australian housing market

Project 24 - Robust and Fire-resilient Light Gauge Steel Systems for Mid-Rise Buildings

Project 25 - Framework of steel fabrication & processing in the OSM & prefabrication

Project 26 - New materials for windows of the future

Project 28 - Componentised Internal Wall Systems for multi residential applications

Project 31 - Demystifying Volumetric Construction: A Study of the Bathroom Pod

Project 32 - Acoustic Flanking performance of mid-rise Light Gauge Steel (LGS)

Project 34 - Acoustic flanking (Scoping Phase 1)

Project 45 - Prefab Wall Integrated System Demonstration House & Market Study

Project 61 - Productivity

Project 63 - Componentised Internal Walls - Extension and Prototyping

Projects: pipeline, active, completed

Sustainability

Project 5 - Automatic Compliance & Energy Rating System

Project 11 - Environmental Credentials for Building Technology Platforms

Project 18 - Long-span Low-Carbon Floor Systems

Project 19 - Hybrid Timber-Steel Structural Systems for Mid to High Rise Buildings

Project 27 - Environmental Decision-Support for Structures

Project 35 - Prefab Housing Solutions for Bushfire & Disaster Relief

Project 37 - Aust Timber Fibre Insulation Scoping Study

Project 39 - Hybrid Timber-Steel Extension

Project 46 - Data analytics for structural fibre resources optimisation

Project 48 - Shared Interest Project: Circular Economy

Project 50 - Automation of energy rating tool

Project 54 - HVAC in a post-covid world

Project 59 - Strong Floor

Project 68 - Post and Plate CLT Scoping, Optimisation, and Testing

Project 72 - PassivHaus Tower Performance Evaluation

Digitalisation

Project 01 - e-Planning / e-Approvals Phase 1

Project 04 - Computational Design & Optimisation Tools for Prefab Building Systems

Project 06 - Field data collation to support real-time operational management

Project 12 - VR/AR Technologies in Vocational Education / Training

Project 16 - Fire Safety in Advanced Building Systems

Project 22 - Design Automation methods for Steel Framed Buildings Phase 1

Project 38 - Victorian Govt Digital Build

Project 42 - Workflow Automation Tools for Home Designs

Project 44 - Generative Architectural Design Engine

Project 53 - Automated Design Optimisation and Al Tools for Prefab Systems (Ext to 4)

Project 55 - Smart Contracts / Smart Finance in construction industry

Project 57 - Wind Comfort Simulation and New Engineering Design Process

Project 62 - Digital Building Approvals

Project 71 - Automated Resolution of BIM Clash Incidents

Project 73 - LLM for Material Tracking and Part Library

People, Practices & Culture

Project 02 - Auto-Tracking of Materials for Supply Chain Logistics and Provenance

Project 09 - Implementing DfMA & Lean Construction Principles

Project 14 - Building Products Supply Chain Naming Conventions and Standards

Project 15 - Resource optimisation Studies: Forest to Building

Project 21 - Regulatory Reform for Industrialised Building

Project 29 - Workplace Safety

Project 33 - Remote Compliance Inspections

Project 56 - Training and Optimising CRC Research in Construction

Project 58 - Construction Wellness

Project 60 - Mass Timber Wellness

Project 66 - Future of Construction Education

Industrialisation

Project 03 - Projects to Platforms

Project 08 - Prefab, Integrated Wall Systems - Scoping Study

Project 17 - Implication of Industry 4.0 for the construction industry: smart prefab

Project 19 - Hybrid Timber-Steel Structural Systems for Mid to High Rise Buildings

Project 20 - Sys & methods for robustness of mid-rise Light Gauge Steel (LGS) buildings

Project 23 - Prefab: Barriers & opportunities in the Australian housing market

Project 24 - Robust and Fire-resilient Light Gauge Steel Systems for Mid-Rise Buildings

Project 25 - Framework of steel fabrication & processing in the OSM & prefabrication

Project 26 - New materials for windows of the future

Project 28 - Componentised Internal Wall Systems for multi residential applications

Project 31 - Demystifying Volumetric Construction: A Study of the Bathroom Pod

Project 32 - Acoustic Flanking performance of mid-rise Light Gauge Steel (LGS)

Project 34 - Acoustic flanking (Scoping Phase 1)

Project 45 - Prefab Wall Integrated System Demonstration House & Market Study

Project 61 - Productivity

Project 63 - Componentised Internal Walls – Extension and Prototyping

Selected B4.0CRC Decarbonisation Projects

- Project #2
- Project #5/#50
- Project #18
 - Project #27
 - Project #48

Auto-Tracking of Materials for Supply Chain Logistics and Provenance

Project #2

Project Aim

This scoping study aims to understand the state-of-the-art traceability in the construction industry and key stakeholders' perspectives and recommend future research.

- Project Lead
 - Dr Wen Li (University of Melbourne)
- Research Team

Dr. Guilherme Luz Tortorella; Prof. Robin Drogemuller; Dr. Aravinda Sridhara Rao; A/Prof. Joseph Liu; Dr. Yihai Fang; A/Prof Tim Rose; Dr. Sara Omrani; Prof. Alistair Barros; Prof. Tuan Ngo; Mr. Declan Cox; Ms. Negar Adebi; Mr. Noor E Karishma Shaik; Mr. Siyu Chen; Mr. Xin Ma; Mr. Tendai Makasi

Public report will be released soon

Traceability - The ability to track and trace

Traceability is **Challenging** due to the nature of the construction supply chain:

- Make-to-order
- Unstable
- Highly fragmented
- Geographically dispersed

Traceability is also **Beneficial** for construction industry as it contributes to:

- Building compliance & safety
- Project efficiency
- Sustainability
- Building performance

LESSONS LEARNT FROM THE FOOD INDUSTRY

- Key Drivers for traceability includes safety and quality, optimizing process efficiency, improving sustainability performance, and increasing consumer confidence.
- Comprehensive legislation, regulations, and international standards mandating traceability exist in the food industry.
- International organization, **GS1**, plays a pivotal role in traceability, providing standards for identifying, capturing, sharing, and using information related to a product.
- The GS1 12 Identification Keys contains information describing the critical tracking events, being carried with mature technologies like barcodes, RFID, and QR codes.
- Digital traceability has potential in providing high resolution and quality data for assessing carbon footprint and improving sustainability performance.

SUPPLY CHAINS IN BUILDING DESIGN, CONSTRUCTION, AND OPERATION

Supply chains in building projects differ from other industries:

- the complexity and inter-related nature of construction projects and their legal context, normally undertaken by a temporary consortium of firms;
- unique activities such as excavation, where the "supply activity" is a removal activity,
- the active role of the Demand Chain participants in checking and approving the results of Supply Chain activities,
- the heavy use of a flexible mix of "supply only", "service only" and "supply and service" subcontracts,
- and the role of the lead contractor (construction systems integrator) in creating and managing a production facility which can change dramatically throughout the single contract.

STATE-OF-THE-ART IN TRACEABILITY TECHNOLOGY

- The available technologies are relatively advanced, and the commercial solutions would easily cater to most construction processes.
- Cost and associated factors may limit organizations from adopting such technologies.
- Many technologies require tedious setup, frequent sensor repositioning for unblocked line-of-sights when tracking on site.
- Design models, schedules, site layout plans, are essential information for material tracking onsite but often not available in an integrated information platform

		QR Code	Barcode	Active RFID	Passive RFID	NFC	∦)) BLE	GPS GPS
·i4:	Cost-Effective	\$	\$	\$\$\$	\$	\$\$\$	\$\$\$	\$\$\$
Ö	Real-time tracking	0	0	0	0	0	0	0
	Power Consumption	0	0	0	0	0	0	0
(1))	Scanning Range	High	High	High	Low	Low	Low	Unlimited
DATA	Storage capacity	3 KB	> 100 bytes	2 KB	4-8 KB	48 Bytes – 8 KB	NA	Unlimited
(L))	Continuous scanning	0	•	•	0	0	At regular intervals	Real-time data
	Two-way Communication	0	0	0	0	0	0	•
	Labour Intensive	V	√	√	×	√	V	✓
	Popularity	Very high	Very high	High	High	Moderate	Moderate	Moderate

STATE-OF-THE-ART IN TRACEABILITY TECHNOLOGY

- BIM can act as a "repository" for storing some results of demand chain management.
- The ISO 19650 series of standards cover the current requirements for integrating BIM into building projects.
- However, many things are not captured in BIM, such as regulatory requirements and temporary works, so BIM is likely to remain a useful adjunct to demand chain and supply chain management for the foreseeable future.

Drivers and Benefits

Barriers and Challenges

Greater Efficiency and Productivity

Value Gained

Enhanced Quality

Enhance Supply Chain Collaboration Support Premanufacturing Strategies

Improved Sustainability

Greater Supply Chain Transparency (Better monitoring of deviations /Identify Opportunities for Improvement)

Introduce Government Mandate

More Accessible Product Information

Educated local workforce

Provide a Visualisation System of Data/Models

Common Data Environment (Standardisation of Data)

Limited Data Accessibility/Sharing

Existence of Many Different Systems

(Software Interoperability)

Lack of Technical Knowledge

End-to-End Supply Chain Requirements

Reactive Responsiveness

Short Term Relationships

Unbalanced Risk Across the Supply Chain

Unbalanced Bargaining Power

KEY FINDINGS

- 1. Fragmentation is a primary barrier to traceability.
- 2. Tender processes inhibit long term supply relationships and therefore long term solutions.
- 3. Product information is not easily maintained due to intermediate fabrication/modification steps.
- 4. Sensor technology is abundant and mature, but requires customisation to suit construction materials.
- 5. Tracking needs to be integrated with BIM/data in order to be useful.
- 6. Lack of digitisation is a hurdle (for example, mills process & output parts with hand-written labels).
- 7. Construction manufacturers don't see a benefit in digitising.
- 8. Contracts are competitive and closed, so lack of transparency inhibits tracking availability.
- 9. There is not a champion driving creation of traceability protocols in the ecosystem.
- 10. Discrepancy between labelling the packaging vs labelling the product. Will materials be substituted without validation; who inspects?
- 11. Adoption of a decarbonisation framework requires thinking of the building as a product, not a project.

FUTURE RESEARCH AGENDA 1

1. Roadmap for Sector-wise Transformation:

This research direction aims to understand the construction supply chain further, examine how we can leverage digitisation as a traceability solution for a streamlined workflow, and develop roadmaps for digitalising the construction supply chain in Australia:

- Identify the **influential contextual variables** (e.g., company size, tier level, product family, etc.) for the digitalisation of the construction supply chain.
- Verify how to **deploy behavioural changes** (i.e., sociocultural factors) required for a successful digitalisation across the construction supply chain.
- Structure **roadmaps for digitising** the construction supply chain in Australia.

building 4.0 Gre

FUTURE RESEARCH AGENDA 2

2. Digital Traceability Solution Development:

This research direction aims to develop cost-effective technological solutions for automated material tracing for the construction supply chain.

- Develop **cost-effective product identification methods** for tracking highly critical building elements like steel, timber, concrete, wall panel, façade, cladding, etc.
- **Integrate** with central building information management models and platforms for sharing product traceability information.
- Explore the possibility of Blockchain technologies for tracking, contracting and transferring.

3. Education and Training:

Through scoping study, it was analysed that the digital traceability solutions are new and innovative, so **technical knowledge and skills gaps** are perceived to understand and operate it:

- Review current curriculum design and develop course materials for construction supply chain management. A few key considerations are identified related to traceability and the construction supply chain:
 - 1) Risk;
 - 2) Digital Technologies;
 - 3) Sustainability;
 - 4) Lean construction
- Develop workshops and training programs for upskilling.

FUTURE RESEARCH AGENDA 4

4. Pilot Study & Living Lab:

Through interviews conducted in scoping study, it was found that **industry partners are hesitant to invest** in digital traceability solutions because of being unsure whether the proposed solution will aid in project performance. So, this project idea will focus on testing/**trialling the proposed digital traceability solutions** in the construction supply chain to check their feasibility and effectiveness:

- Turn an actual building project into a **living lab** by deploying proposed digital traceability solutions
- Benchmark digitalised supply chains with a **comparative** conventional one by monitoring supply chainrelated KPIs (Key Performance Indicators), such as lead time, productivity, project delays, etc.
- Use digital traceability information to **conduct carbon footprint and life cycle assessment** of a construction project or building product.

Automatic Compliance and Energy Rating System

Project #5

FIGURE 2: EXISTING NATHERS SOFTWARE TOOLS - LEFT TO RIGHT - ACCURATE (CSIRO), FIRSTRATE5 (SUSTAINABILITY VICTORIA), B.E.R.S. PRO (ENERGY INSPECTION) & HERO

Long Span, Low Carbon Floor Systems

Project #18

crc# 18

Long Span, Low Carbon Floor Systems (Scoping Study)

Project Overview 13.10.21

Lendlease

Sumitomo Forestry

Building 4.0 CRC

Future Building Initiative

Monash University

University of Melbourne

objectives Understand the

Understand the research and market developments in long span, low carbon floor systems

Provide a framework to inform future design work in the development of such systems.

methods Market search and literature review

Benchmarking to **identify, evaluate** and **compare** existing systems according to a number of selected criteria.

project objectives + methods

floor system design

literature review

element typology

systems selected

design

element to element connection

design

factory production

pr

		Quantitative	Quantitative	Quantitative	Quantitative	Quantitative	Quantitative
		Production	Production	Design	Design	Design	Design
		Floor area per truck delivery	Total lifts 8x8m x 8 storeys (unloading + lifting)	Material volume per 8x8m	Floor Depth with Services (1D reticulation)	Floor Depth with Services (Partial 2D reticulation)	Floor Depth with Services (2D reticulation)
System ID		NORMALISED RANK (1-9)	NORMALISED RANK (1-9)	NORMALISED RANK (1-9)	NORMALISED RANK	NORMALISED RANK	NORMALISED RANK (1-9)
1	Daramu House	6	1	8	3	1	1
2	Stora Enso CLT Open Rib Panel	6	4		2	1	1
3	Kielsteg Closed Curved Rib Panel	1	6		5	4	4
4	Lignatur Close Rib Panel	4	9	1	1	1	
5	Stora Enso LVL CLosed Rib Panel	1	2	1	2	2	
6	Hasslacher Timber Slab	1	8	7	5	4	4
7	MMHolz Timber-Concrete Slab	9	2	9	6	6	6
8	CREE Timber-Concrete	8	1	5	3	4	7
9	TecSlab Cassette	9	4	2	9	9	9

Mixed (Quant + Qual)	Qualitative	Mixed (Quant + Qual)	Mixed (Quant + Qual)	Mixed (Quant + Qual)	Mixed (Quant + Qual)	
Design	Design	Design	Design	Design	Design	
Dimensional + Geometric Flexibility	Aesthetic Potential	Factory Processes	Site Installation	Varied Connection Design	Element to Element Connection	
TIERED RANK (1-3)	TIERED RANK (1-3)	TIERED RANK (1-3)	TIERED RANK (1-3)	TIERED RANK (1-3)	TIERED RANK (1-3)	
1	1	1	1	2	1	
1	1	1	1	1	2	
	2	3	2	1	3	
2	1	2	3	1	1	
1	2	1	1	1	2	
	2		2	1	3	
2	2	2	1	2	3	
3	1	2	3	3	2	
3	3	3	3	2		

normalised ranks per criteria + qualitative tiered system

Circular Economy Roadmap for the Construction Industry

Project #48

BUILDING AND CONSTRUCTION IMPACT

MISSION ZER® ROADMAP

LENDLEASE AUSTRALIA SUMMARY

THANK YOU

C.KNAPP@BUILDING40CRC.ORG

